Highly electroconductive $TiN/Si₃N₄$ composite ceramics fabricated by spark plasma sintering of $Si₃N₄$ particles with a nano-sized TiN coating

Shuichi Kawano, Junichi Takahashi and Shiro Shimada*

Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan. Tel: $+81$ 11 706 6576; Fax: $+81$ 11 706 6576; E-mail: shimashi@eng.hokudai.ac.jp

Received 3rd August 2001, Accepted 25th October 2001 First published as an Advance Article on the web 3rd January 2002

 $Si₃N₄$ particles coated with 20 nm TiN have been sintered by spark plasma sintering (SPS) at 1600 °C. The 25 vol.% TiN ceramic achieved a relative density of 91% without sintering additives. TEM and HREM observations indicate that a glassy phase derived from the $Si₃N₄$ particles plays a role in densification. Ceramics derived from TiN/Si₃N₄ composite particles containing 25 and 32.5 vol.% TiN possess continuous TiN networks in a Si₃N₄ matrix and their electrical resistivity is of the order of $1 \times 10^{-4} \Omega$ cm, much lower than that of a mechanical mixture of nano-sized TiN particles and $Si₃N₄$ particles (1 Ω cm).

Introduction

Si3N4 ceramics are promising high temperature structural materials^{1,2} but are difficult to form by mechanical methods into complex shapes because of their toughness and hardness. Composite ceramics composed of $Si₃N₄$ with highly electrical conductive TiN have been prepared, and can be easily shaped by electrical discharge machining (EDM). Martin et al .³ reported that for composite TiN/Si₃N₄ ceramics to be machinable by EDM, their electrical resistivity should be less than 5×10^{-3} Q cm, with a TiN content of about 33 vol.%. When this criterion of electrical resistivity is adjusted to the $Si₃N₄$ and TiN composites obtained by Kamijo et $al⁴$ and Bellosi et al., 5 the amount of TiN needed for EDM is approximately the same as that reported by Martin et al. It is preferable to decrease the TiN content of the $Si₃N₄$ composites, since TiN is readily oxidized at about $600\degree C$, causing the degradation of the mechanical and electrical properties.

 $TiN/Si₃N₄$ composite materials are usually made by sintering mechanically mixed powders.^{3-5,7,8} However, mechanical mixing of powders introduces inhomogeneity in the mixture and necessitates additional TiN to achieve high electrical conductivity. On the other hand, uniformly coating the matrix particles with the second material is an effective means of obtaining a homogeneous mixture. $Si₃N₄$ matrix particles coated with sintering additives such as Al_2O_3 , Y_2O_3 , and MgO^{9-11} have been found to require less of the additive for densification. The preparation of TiN-coated $Si₃N₄$ particles has been reported by Narula et al ,¹² who obtained the composite particles by pyrolysis of $(CH₃)₃SiNHTiCl₃$ with $Si₃N₄$ at 600 °C. Since this method introduces Si, Cl, and C impurities from the reagent $(CH₃)₃SiNHTiCl₃$, a simpler method for preparing composite particles of a high purity is desirable. In our previous paper, 13 we reported a preparation method for nano-sized TiN-coated $Si₃N₄$ particles by nitridation of $TiO₂$ in NH₃ gas following thermal hydrolysis of $TiCl₄$ with urea.

Hot pressing (HP) and hot isostatic pressing (HIP) are well known methods for sintering $Si₃N₄$ particles. Recently, spark plasma sintering (SPS) has attracted much attention for densifying poorly-sinterable materials such as $Al_2O_3^{14-16}$ and ZrO_2 .¹⁷ In SPS densification, a compacted sample is placed in a graphite die and heated under uniaxial pressure using pulses of current. The processes involved in SPS are initiated by the electrical discharge between the powder particles, which cleans the particles surfaces, promotes mass transfer, and so on.¹⁸ Under these conditions, ceramics are densified in a very short time (several minutes) at low temperatures with suppression of grain growth. It therefore seemed possible that by using SPS to sinter the previously reported¹³ TiN-coated $Si₃N₄$ particles, high-conductivity $Si₃N₄$ could be made with reduced overall amounts of TiN which were still connected throughout the solid.

The purpose of this study is to fabricate densified TiN/ $Si₃N₄$ composite ceramics by SPS of nano-sized TiN-coated Si3N4 particles. The amount of TiN which must be added to produce composite ceramics with low electrical resistivity $(<5\times10^{-3} \Omega \text{ cm})$ to facilitate EDM is determined. The effect on the electrical resistivity of coating nano-sized TiN particles is compared with SPS ceramics prepared from mechanical mixtures. The microstructure of continuously-TiN-coated $Si₃N₄$ composite ceramics is revealed by transmission electron microscopy and high resolution electron microscopy.

Experimental procedure

Preparation of TiN-coated $Si₃N₄$ particles

The preparation procedure of TiN-coated $Si₃N₄$ particles has been reported in a previous paper.¹³ The starting materials were $Si₃N₄$ with a mean particle size of 0.5 μ m (α -type >95%,UBE Industries, Tokyo, Japan), TiCl₄ (KANTO Chemical, Co., Inc., Tokyo, Japan), and urea (KANTO Chemical, Co., Inc., Tokyo, Japan). $Si₃N₄$ powder was added to a mixture of HCl, $TiCl₄$, and urea and ultrasonically dispersed for 15 min. The amount of $TiCl₄$ with respect to $Si₃N₄$ was adjusted to 10, 17.5, 25, 32.5, and 100 vol.% of the reduced volume of TiN in $Si₃N₄$. The suspension was heated at 105 °C for 190 min in flowing N₂ gas. The resulting TiO₂coated $Si₃N₄$ particles were washed several times with distilled water and dried at 60 °C. The TiO₂-coated $Si₃N₄$ composite particles were nitrided at 1000 °C for 180 min in flowing $NH₃$ gas (150 ml min^{-1}). The success of the coating procedure was confirmed by transmission electron microscopy (TEM), electron diffraction, and energy dispersive X-ray analysis (EDX).

Fabrication of $TiN/Si₃N₄$ composite ceramics by SPS

The SPS apparatus (SPS-501L, Sumitomo Coal Mining Co.) used in this experiment is shown in Fig. 1. A 0.25 g compact (6 mm diameter) of the TiN-coated $Si₃N₄$ composite was embedded in BN powder containing 5 vol.% commercial TiN. The BN powder was used to prevent reaction between the compact and the graphite die.¹⁹ Sintering was carried out at 1600 or 1700 °C in N_2 under a uniaxial pressure of 39 MPa using a controlled electric current. The temperature on the graphite die surface was measured by optical pyrometer. When the sintering temperature was reached, the current was switched off without holding. A typical heating schedule to $1600\degree$ C is shown in Fig. 2, using a current value of 740 A, a heating rate of 20° C min⁻¹, and a total sintering time of 14.5 min at 1600° C. For comparison, mechanically mixed powders containing $Si₃N₄$ and 25 vol.% TiN were sintered at 1600° C by SPS. The mixtures used in the latter sintering experiment were prepared by two methods. One method involved ball milling commercial TiN (1.43 µm, Soekawa Co., Inc., Tokyo, Japan) and $Si₃N₄$ and drying at 60 °C for a day (labeled L-mixture). The other method was to ball mill nanosized $TiO₂$ (prepared by thermal hydrolysis of $TiCl₄$ and urea) together with $Si₃N₄$, followed by drying at 60 °C for a day and nitridation at $1000\,^{\circ}\text{C}$ (labeled N-mixture). In both cases the ball milling was carried out for 24 h in ethanol with $ZrO₂$ balls.

The densities of the sintered $TiN/Si₃N₄$ composites were measured with distilled water at room temperature by the Archimedes method. Phase identification of the ground powder was made by X-ray diffraction (XRD), and the lattice constant

Fig. 1 Schematic diagram of the SPS apparatus.

Fig. 2 Typical schedule of the current and temperature.

 (a_0) of the TiN was determined using silicon powder as an internal standard. The polished surface microstructures of the sintered Si_3N_4/TiN composites were observed by scanning electron microscopy (SEM). The TiN/Si₃N₄ composite containing 32.5 vol.% TiN sintered at 1600° C was cut into several pieces and a thin foil of one piece was prepared by mechanical dimple-thinning and repeated ion milling. The interfacial area between Si_3N_4 and Si_3N_4 and between Si_3N_4 and TiN was examined with a TEM operating at 200 kV. The interfacial area between TiN and TiN was also observed using a multi beam high voltage electron microscope (HREM) at 1250 kV. The electrical resistivities of the ceramics containing 10–100 vol.% TiN were measured by a two-probe and/or four-probe method at room temperature. The Vickers hardness of the TiN/Si₃N₄ ceramics containing 25, 32.5, and 100 vol.% TiN was measured using a load of 200 g for 15 s. The volume ratio of $Si₃N₄$ to TiN in the ceramic was determined by computer analysis of the SEM images utilizing the difference in brightness of TiN and $Si₃N₄$.

Results and discussion

Preparation of TiN-coated $Si₃N₄$ particles

According to a previous report, ¹³ TiN-coated Si_3N_4 composite particles can be prepared by nitridation of the $TiO₂$ formed by thermal hydrolysis of TiCl4. TEM observation of composites containing 25 vol.% TiN shows that $Si₃N₄$ particles are coated with 20 nm TiN particles (Fig. 3). The existence of the TiN particles was confirmed by electron diffraction around the arrow point, which shows TiN diffraction spots, confirming that nano-sized TiN coated $Si₃N₄$ composite particles had been successfully produced. TiN-coated $Si₃N₄$ composites containing 10, 17.5, 32.5 vol.% TiN were similarly prepared. The lattice constant of the TiN (a_0) was found to be 0.422 nm for all the composites; this decrease from the value for pure TiN $(a_0=0.424 \text{ nm})^{20}$ suggests that the TiN particles contain a small amount of oxygen.

Fabrication of TiN/Si₃N₄ ceramics by SPS

The TiN-coated $Si₃N₄$ samples were sintered by SPS at 1600 and 1700 °C. The composites sintered at 1700 °C contained within millimetre-sized holes on the surfaces and were metallic silver in color due to the presence of Si as evidenced by XRD, suggesting that $Si₃N₄$ was decomposed to Si and nitrogen gas during SPS; when nitrogen gas went out through the Si melt, millimetre-sized holes were formed. Since this result shows that 1700 °C is too high a temperature for sintering TiN/Si₃N₄ composite particles, the process was carried out at 1600° C. The XRD patterns of the sintered ceramics indicate the presence of only $Si₃N₄$ and TiN, the lattice constant of the latter increasing from $a_0 = 0.422$ to 0.424 nm, probably because heat treatment

Fig. 3 TEM image of TiN-coated $Si₃N₄$ particles in the sample containing 25 vol.% TiN.

at 1600 °C in N₂ replaces the oxygen impurity, resulting in TiN with a lattice constant approaching that of pure TiN.

Fig. 4 shows backscattered electron images in SEM of the polished surfaces of composites containing 25 vol.% TiN prepared from TiN-coated $Si₃N₄$ particles, the L-mixture, and the N-mixture, all sintered at $1600\,^{\circ}\text{C}$. The difference in the backscattering properties of the lighter and heavier atoms shows up as the gray and white regions corresponding to $Si₃N₄$ and TiN, respectively. The composites prepared from TiNcoated Si_3N_4 [Fig. 4(a)] show aggregated gray Si_3N_4 regions surrounded by successive white TiN layers, even though some aggregated TiN particles are formed. Computer image analysis of the gray and white regions in this figure indicates a TiN content of 25 ± 1 vol.%, in very good agreement with the nominal 25 vol.% composition. The ceramics derived from the L-mixture are porous and have ca . 1–7 μ m-sized TiN grains (white particles) [Fig. 4(b)], which exist separately from the $Si₃N₄$ grains. It is apparent that these ceramics have not sintered. By contrast to the TiN-coated $Si₃N₄$ -derived materials, the surface of the N-mixture ceramic [Fig. 4(c)] shows isolated TiN particles of around 1–2 μ m size and Si₃N₄ particles. The mechanical mixtures of TiN and $Si₃N₄$ do not

Fig. 4 Backscattered SEM images of polished TiN/Si₃N₄ ceramics containing 25 vol.% TiN prepared from (a) TiN-coated $Si₃N₄$ particles, (b) a mechanical mixture of commercial TiN and $Si₃N₄$ (L-mixture), (c) a mechanical mixture of nano-sized TiN and $Si₃N₄$ (N-mixture).

form of continuous TiN networks, which are necessary to make the $Si₃N₄$ matrix electrically conducting.

Fig. 5 shows that the relative densities of the TiN-coated $Si₃N₄$ ceramic measured as a function of the TiN content increase sharply from 64% (17.5 vol.% TiN) to 91% (25 vol.%), respectively, followed by a gradual increase to 97% for single phase TiN. On the other hand, ceramics containing 25 vol.% TiN derived from the L- and N-mixtures in which the TiN particle sizes were 1.43 and 20 nm, respectively, showed relative densities of 50 and 98%, respectively.

Fig. 6 shows the TEM image of the lattice fringes in a representative region of $Si₃N₄$ and TiN, including their phase boundaries. The lattice fringe spacings of 0.67 and 0.39 nm in Fig. 6(a) and (b) correspond to the (100) and the (110) spacings of α -Si₃N₄, respectively, whereas the spacing of 0.24 nm in Fig. 6(b) and (c) corresponds to the (111) spacing of TiN. As seen in Fig. 6(a), the grain boundary phase between the α -Si₃N₄ grains is amorphous, suggesting a glassy phase of ca. 1 nm thickness. This thin glassy layer may contain the oxygen remaining on the surfaces of the $Si₃N₄$ particles since no oxide sintering additives were added to this system. The boundary phase between the $Si₃N₄$ and TiN grains is also amorphous, but thicker $(ca. 2 nm)$ [Fig. $6(b)$]. This increase of grain boundary thickness may be due to the reaction of $Si₃N₄$ with the oxygen swept out from the TiN during SPS. In contrast, no glassy layer is observed between the TiN grains [Fig. 6(c)], suggesting that TiN–TiN connections can be produced without an intervening glassy phase. The interfacial images and microstructure (Fig. 4) show that the compact derived from TiN-coated $Si₃N₄$ particles may be densified by the formation of the glassy layer between the TiN and $Si₃N₄$ interface, whereas the sample derived from the N-mixture is sintered not only via the glassy layer but more predominantly by TiN–TiN contacts, as in single phase TiN.

The Vickers hardness values of the $Si₃N₄/TiN$ composites containing $>$ 25 vol.% TiN are shown in Table 1. The hardness of sample containing 100 vol.% TiN is 1850 kg mm⁻², comparable to the reported value for pure TiN (2000 kg mm⁻²),²¹ whereas the hardness of the 25 and 32.5 vol.% TIN ceramics derived from the TiN-coated $Si₃N₄$ particles and the N-mixture is about 1400 kg mm^{-2} for all. This decreased hardness is probably due to the presence of pores and/or the existence of a glassy layer in the ceramics.

The change of electrical resistivity of the composites is shown as a function of the TiN content in Fig. 7. The resistivity rapidly decreases from $2 \times 10^6 \Omega$ cm in the 10 vol.% TiN sample to ca. $10^{-4} \Omega$ cm in the 25 and 32.5 vol.% TiN samples. This rapid decrease is related to the formation with TiN networks as shown in Fig. 4(a). The resistivity finally decreases to

Fig. 5 Change in the relative density of the composites with TiN content.

Fig. 6 Interface images of (a) $Si₃N₄-Si₄N₄$, (b) $Si₃N₄-TiN$, (c) TiN-TiN.

Table 1 Vickers hardness of $TiN/Si₃N₄$ composites

TiN content/vol.%	Vickers hardness/kg mm ^{-2}
25 (coated)	$1390 + 110$
32.5 (coated)	$1430 + 90$
25 (N-mixture)	$1460 + 130$
100	$1850 + 50$

 1×10^{-5} Q cm in the 100% TiN sample, comparable with the reported value for pure TiN $(2.5 \times 10^{-5} \Omega \text{ cm})^{21}$ The amount of TiN required to fabricate TiN/Si₃N₄ ceramics by EDM was found here to be a maximum of 23 vol.% (Fig. 7), a reduction of 10 vol.% from the previously-reported value $(33 \text{ vol.}\%)$.³⁻⁵ The electrical resistivity of the ceramic prepared at 1600° C from the N-mixture containing 25 vol.% TiN was $1 \Omega \text{ cm}$, higher by a factor of $10⁴$ than the composites prepared from TiN -coated $Si₃N₄$ particles. This is because continuous TiN networks do not exist in the N-mixture composite [Fig. 4(c)].

Fig. 7 Change of electrical resistivity of the composites with TiN content.

Thus, it is concluded that the TiN coating on the $Si₃N₄$ particles greatly reduces the amount of TiN needed to provide a low enough electrical resistivity for EDM processing of $Si₃N₄$ composites.

Conclusion

 $TiN/Si₃N₄$ composite ceramics have been fabricated from $Si₃N₄$ particles coated with 20 nm sized TiN particles at $1600 °C$ using SPS with a controlled current. The ceramic product containing 25 vol.% TiN has a relative density of 91%, which increases with the TiN content to 97% at 100 vol.% TiN. At the $Si₃N₄/Si₃N₄$ and $Si₃N₄/TiN$ grain boundaries, glassy layers a few nm thick are observed by TEM. These may play a role in the densification of the composites. By contrast, no interfacial glassy layer is observed at the TiN/TiN grain boundaries, indicating direct connection between the TiN particles.

The electrical resistivity of the composite ceramic containing 25 vol.% TiN (4×10^{-4} Q cm) was found to be much lower than for ceramics obtained from a mechanical mixture of the component (1 Ω cm), indicating that coating the Si₃N₄ particles with TiN particles is effective in producing a continuous TiN network at lower TiN contents. By this means, the amount of TiN in TiN/Si₃N₄ composites needed for EDM can be reduced by 10 vol.%, compared with the previously reported values.

Acknowledgements

The use of the multi beam high voltage electron microscope (HREM) in Hokkaido University is gratefully acknowledged. The authors thank Dr H. Takahashi and Dr K. Sugawara (CARET, Hokkaido University, Sapporo, Japan) for useful advice and discussions on TEM and HREM observations, Dr K. Kurokawa (Hokkaido University, Sapporo, Japan) for using the SPS apparatus, and Dr K. J. D. MacKenzie (Industrial Research, Lower Hutt, New Zealand) for reviewing our manuscript.

References

- 1 C. K. Naurula, J. E. Allison, D. R. Bauer and H. S. Gandhi, Chem. Mater., 1996, 8, 984.
- 2 A. W. Weimer, Carbide, Nitride and Boride Materials Synthesis and Processing, Chapman & Hall, London, 1997, pp. 5, 7
- 3 C. Martin, B. Cales, P. Vivier and P. Mathieu, Mater. Sci. Eng. A, 1989, 109, 351.
- 4 E. Kamijo, M. Honda, M. Higuchi, H. Takeuchi and T. Tanimura, Sumitomo Electr. Tech. Rev., 1985, 24, 183.
- 5 A. Bellosi, S. Guricciardi and A. Tampieri, J. Eur. Ceram. Soc., 1992, 9, 83.
- 6 Yu. G. Gogotsi and F. Porz, Corros. Sci., 1992, 33, 62.
7 B.-T. Lee, Y.-J. Yoon and K.-H. Lee, *Mater. Lett.*
- B.-T. Lee, Y.-J. Yoon and K.-H. Lee, Mater. Lett., 2001, 47, 71.
- 8 W. Lin, J.-M. Yang, S.-J. Ting, A. Ezis and C. J. Shin, J. Am. Ceram. Soc., 1992, 75, 945.
- 9 J. Yang, J. M. F. Ferreira and W. Weng, J. Colloid Interface Sci., 1998, 206, 274.
- 10 F. Bertoni, C. Galassi, S. Ardizzone and C. L. Bianchi, J. Am. Ceram. Soc., 1999, 82, 2653.
- 11 A. K. Garg and L. C. D. Jonghe, J. Mater. Res., 1990, 5, 136.
- 12 C. K. Narula, B. G. Demczyk, P. Czubrow and D. Seyferth, J. Am. Ceram. Soc., 1995, 78, 1247.
- 13 S. Kawano, K. Tsukurimichi, J. Takahashi and S. Shimada, J. Mater. Chem., 2001, 11, 2625.
- 14 S. W. Wang, L. D. Chen and T. Hirai, J. Mater. Res., 2000, 15, 982.
- 15 G. J. S. Hohg, H. Miyamoto and S. D. D. L. Torre, J. Eur. Ceram. Soc., 2000, 20, 2149.
- 16 N. Murayama and W. Shin, J. Ceram. Soc. Jpn., 2000, 108, 799.
	- 17 W. Li. L. Gao, J. Eur. Ceram. Soc., 2000, 20, 2441.
	- 18 M. Omori, Mater. Sci. Eng., A, 2000, 287, 183.
	- 19 J. Takahashi, S. Kawano, S. Shimada and K. Kageyama, Jpn. J. Appl. Phys., 1999, 38, 5493.
	- 20 ASTM 38-1420.
	- 21 L. E. Toth, Transition Metal Carbides and Nitrides, Academic Press, New York & London, 1971, pp. 7, 188.